Antimicrobial resistance and virulence of subgingival staphylococci isolated from periodontal health and diseases


  • Otto, M. Staphylococci in the human microbiome: The role of host and interbacterial interactions. Curr. Opin. Microbiol. 53, 71–77. https://doi.org/10.1016/j.mib.2020.03.003 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Mebairik, N. F., El-Kersh, T. A., Al-Sheikh, Y. A. & Marie, M. A. M. A review of virulence factors, pathogenesis, and antibiotic resistance in Staphylococcus aureus. Rev. Med. Microbiol. 27, 50–56. https://doi.org/10.1097/mrm.0000000000000067 (2016).

    Article 

    Google Scholar 

  • Zheng, Y., He, L., Asiamah, T. K. & Otto, M. Colonization of medical devices by staphylococci. Environ. Microbiol. 20, 3141–3153. https://doi.org/10.1111/1462-2920.14129 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedrich, A. W. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien Med. Wochenschr 169, 25–30. https://doi.org/10.1007/s10354-018-0676-5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cassini, A. et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect Dis. 19, 56–66. https://doi.org/10.1016/S1473-3099(18)30605-4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heilmann, C., Ziebuhr, W. & Becker, K. Are coagulase-negative staphylococci virulent?. Clin. Microbiol. Infect. 25, 1071–1080. https://doi.org/10.1016/j.cmi.2018.11.012 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gendron, R., Grenier, D. & Maheu-Robert, L.-F. The oral cavity as a reservoir of bacterial pathogens for focal infections. Microbes Infect. 2, 897–906. https://doi.org/10.1016/S1286-4579(00)00391-9 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCormack, M. G. et al. Staphylococcus aureus and the oral cavity: An overlooked source of carriage and infection?. Am. J. Infect. Control. 43, 35–37. https://doi.org/10.1016/j.ajic.2014.09.015 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friedlander, A. H. Oral cavity staphylococci are a potential source of prosthetic joint infection. Clin. Infect. Dis. 50, 1682–1683. https://doi.org/10.1086/653003 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Smith, A. J. et al. Staphylococcus aureus in the oral cavity: A three-year retrospective analysis of clinical laboratory data. Br. Dent. J. 195, 701–703. https://doi.org/10.1038/sj.bdj.4810832 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • El-Solh, A. A. et al. Colonization of dental plaques: A reservoir of respiratory pathogens for hospital-acquired pneumonia in institutionalized elders. Chest 126, 1575–1582. https://doi.org/10.1378/chest.126.5.1575 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Azmi, A. H., Adnan, S. N. A. & Ab Malik, N. The prevalence of Staphylococcus aureus in the oral cavity of healthy adults in Malaysia. Sains Malaysiana 49, 583–591. https://doi.org/10.17576/jsm-2020-4903-13 (2020).

    Article 

    Google Scholar 

  • Murdoch, F. E., Sammons, R. L. & Chapple, I. L. Isolation and characterization of subgingival staphylococci from periodontitis patients and controls. Oral Dis. 10, 155–162. https://doi.org/10.1046/j.1601-0825.2003.01000.x (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Connor, A. M. et al. Significant enrichment and diversity of the staphylococcal arginine catabolic mobile element ACME in Staphylococcus epidermidis isolates from subgingival peri-implantitis sites and periodontal pockets. Front. Microbiol. 9, 1558. https://doi.org/10.3389/fmicb.2018.01558 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • dos Santos, B. R. et al. Prevalence of subgingival Staphylococcus at periodontally healthy and diseased sites. Braz. Dent. J. 25, 271–276. https://doi.org/10.1590/0103-6440201302285 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Souto, R. & A. A., Uzeda M, Colombo APV.,. Prevalence of “non-oral” pathogenic bacteria in subgingival biofilm of subjects with chronic periodontitis. Braz. J. Microbiol. 37, 208–215. https://doi.org/10.1590/S1517-83822006000300002 (2006).

    Article 

    Google Scholar 

  • Rams, T. E., Feik, D. & Slots, J. Staphylococci in human periodontal diseases. Oral Microbiol. Immunol. 5, 29–32. https://doi.org/10.1111/j.1399-302x.1990.tb00222.x (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fritschi, B. Z., Albert-Kiszely, A. & Persson, G. R. Staphylococcus aureus and other bacteria in untreated periodontitis. J. Dent. Res. 87, 589–593. https://doi.org/10.1177/154405910808700605 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Loberto, J. C. S., Martins, C. A. D., dos Santos, S. S. F., Cortelli, J. R. & Jorge, A. O. C. Staphylococcus spp. in the oral cavity and periodontal pockets of chronic periodontitis patients. Braz. J. Microbiol. 35, 64–68. https://doi.org/10.1590/S1517-83822004000100010 (2004).

    Article 

    Google Scholar 

  • Cuesta, A. I., Jewtuchowicz, V., Brusca, M. I., Nastri, M. L. & Rosa, A. C. Prevalence of Staphylococcus spp. and Candida spp. in the oral cavity and periodontal pockets of periodontal disease patients. Acta Odontol. Latinoam. 23, 20–26 (2010).

    PubMed 

    Google Scholar 

  • Dahlén, G. & Wikström, M. Occurrence of enteric rods, staphylococci and Candida in subgingival samples. Oral Microbiol. Immunol. 10, 42–46. https://doi.org/10.1111/j.1399-302x.1995.tb00116.x (1995).

    Article 
    PubMed 

    Google Scholar 

  • Passariello, C., Lucchese, A., Virga, A., Pera, F. & Gigola, P. Isolation of Staphylococcus aureus and Progression of periodontal lesions in aggressive periodontitis. Eur. J. Inflamm. 10, 501–513. https://doi.org/10.1177/1721727X1201000326 (2012).

    Article 
    CAS 

    Google Scholar 

  • Oza, N. & Doshi, J. J. Angular cheilitis: A clinical and microbial study. Indian J. Dent. Res. 28, 661–665. https://doi.org/10.4103/ijdr.IJDR_668_16 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bagg, J., Sweeney, M. P., Wood, K. H. & Wiggins, A. Possible role of Staphylococcus aureus in severe oral mucositis among elderly dehydrated patients. Microb. Ecol. Health Dis. 8, 51–56. https://doi.org/10.3109/08910609509141382 (1995).

    Article 

    Google Scholar 

  • Rokadiya, S. & Malden, N. J. An implant periapical lesion leading to acute osteomyelitis with isolation of Staphylococcus aureus. Br. Dent. J. 205, 489–491. https://doi.org/10.1038/sj.bdj.2008.935 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Papapanou, P. N. et al. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J. Periodontol. 89(Suppl 1), S173–S182. https://doi.org/10.1002/JPER.17-0721 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Tonetti, M. S., Greenwell, H. & Kornman, K. S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 89(Suppl 1), S159-s172. https://doi.org/10.1002/jper.18-0006 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Bartold, P. M. & Van Dyke, T. E. Periodontitis: A host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol. 2000 62, 203–217. https://doi.org/10.1111/j.1600-0757.2012.00450.x (2013).

    Article 
    PubMed 

    Google Scholar 

  • Botero, J. E. et al. Occurrence of periodontopathic and superinfecting bacteria in chronic and aggressive periodontitis subjects in a Colombian population. J. Periodontol. 78, 696–704. https://doi.org/10.1902/jop.2007.060129 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Vieira Colombo, A. P., Magalhães, C. B., Hartenbach, F. A. R. R. & Martins do Souto, R. & Maciel da Silva-Boghossian, C.,. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Micro Path. 94, 27–34. https://doi.org/10.1016/j.micpath.2015.09.009 (2016).

    Article 
    CAS 

    Google Scholar 

  • Persson, G. R. et al. Tannerella forsythia and Pseudomonas aeruginosa in subgingival bacterial samples from parous women. J. Periodontol. 79, 508–516. https://doi.org/10.1902/jop.2008.070350 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Thurnheer, T. & Belibasakis, G. N. Integration of non-oral bacteria into in vitro oral biofilms. Virulence 6, 258–264. https://doi.org/10.4161/21505594.2014.967608 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lima, B. P., Hu, L. I., Vreeman, G. W., Weibel, D. B. & Lux, R. The oral bacterium Fusobacterium nucleatum binds Staphylococcus aureus and alters expression of the Staphylococcal accessory regulator sarA. Microb. Ecol. 78, 336–347. https://doi.org/10.1007/s00248-018-1291-0 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tada, A. et al. Association between commensal bacteria and opportunistic pathogens in the dental plaque of elderly individuals. Clin. Microbiol. Infect. 12, 776–781. https://doi.org/10.1111/j.1469-0691.2006.01497.x (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Back-Brito, G. N. et al. Staphylococcus spp., Enterobacteriaceae and Pseudomonadaceae oral isolates from Brazilian HIV-positive patients. Correlation with CD4 cell counts and viral load. Arch. Oral. Biol. 56, 1041–1046. https://doi.org/10.1016/j.archoralbio.2011.02.016 (2011).

    Article 
    PubMed 

    Google Scholar 

  • da Silva-Boghossian, C. M. & do Souto, R. M., Luiz, R. R. & Colombo, A. P.,. Association of red complex, A. actinomycetemcomitans and non-oral bacteria with periodontal diseases. Arch Oral Biol 56, 899–906. https://doi.org/10.1016/j.archoralbio.2011.02.009 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Espíndola, L. C. P., Picão, R. C., Mançano, S., Martins do Souto, R. & Colombo, A. P. V. Prevalence and antimicrobial susceptibility of Gram-negative bacilli in subgingival biofilm associated with periodontal diseases. J. Periodontol. 93, 69–79 (2022). https://doi.org/10.1002/jper.20-0829

  • Bizzini, A., Durussel, C., Bille, J., Greub, G. & Prod’hom, G. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J. Clin. Microbiol. 48, 1549–1554. https://doi.org/10.1128/JCM.01794-09 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manukumar, H. M. & Umesha, S. MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Sci. Rep. 12, 11414. https://doi.org/10.1038/s41598-017-11597-z (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • CLSI. M100d32. Performance Standards for Antimicrobial Susceptibility Testing. (Clinical and Laboratory Standards Institute, 2022).

  • Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mason, W. J. et al. Multiplex PCR protocol for the diagnosis of staphylococcal infection. J. Clin. Microbiol. 39, 3332–3338. https://doi.org/10.1128/JCM.39.9.3332-3338.2001 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peacock, S. J. et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect. Immun. 70, 4987–4996. https://doi.org/10.1128/iai.70.9.4987-4996.2002 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tristan, A. et al. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J. Clin. Microbiol. 41, 4465–4467. https://doi.org/10.1128/jcm.41.9.4465-4467.2003 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lina, G. et al. Involvement of panton-valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128–1132. https://doi.org/10.1086/313461 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 399, 629–655 (2022). https://doi.org/10.1016/s0140-6736(21)02724-0.

  • Ohara-Nemoto, Y., Haraga, H., Kimura, S. & Nemoto, T. K. Occurrence of staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the bacteria. J. Med. Microbiol. 57, 95–99. https://doi.org/10.1099/jmm.0.47561-0 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, G.-Y. & Lee, C. H. Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis. J. Periodontal. Implant. Sci. 45, 223–228 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sultana, S. et al. Prevalence of methicillin and beta-lactamase resistant pathogens associated with oral and periodontal disease of children in Mymensingh, Bangladesh. Pathogens 11, 890 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koukos, G. et al. Prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) in the oral cavity. Arch. Oral. Biol. 60, 1410–1415. https://doi.org/10.1016/j.archoralbio.2015.06.009 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Kryvtsov, M. V. et al. Determination of biofilm formation and associated gene detection in Staphylococcus genus isolated from the oral cavity under inflammatory periodontal diseases. Stud. Biol. 14, 49–64. https://doi.org/10.30970/sbi.1403.627 (2020).

    Article 

    Google Scholar 

  • Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661. https://doi.org/10.1128/CMR.00134-14 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, K., Heilmann, C. & Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27, 870–926. https://doi.org/10.1128/CMR.00109-13 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakraborty, P., Chowdhury, R., Bhakta, A., Mukhopahyay, P. & Ghosh, S. Microbiology of periodontal disease in adolescents with Type 1 diabetes. Diabetes Metab. Syndr. 15, 102333. https://doi.org/10.1016/j.dsx.2021.102333 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garbacz, K. et al. Distribution and antibiotic-resistance of different Staphylococcus species identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) isolated from the oral cavity. J. Oral Microbiol. 13, 1983322. https://doi.org/10.1080/20002297.2021.1983322 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colombo, A. P. et al. Clinical and microbiological features of refractory periodontitis subjects. J. Clin. Periodontol. 25, 169–180. https://doi.org/10.1111/j.1600-051x.1998.tb02424.x (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brooks, L., Narvekar, U., McDonald, A. & Mullany, P. Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review. Mol. Oral Microbiol. 37, 133–153. https://doi.org/10.1111/omi.12375 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schnurr, E. et al. Staphylococcus aureus interferes with Streptococci spatial distribution and with protein expression of species within a polymicrobial oral biofilm. Antibiotics 10, 116. https://doi.org/10.3390/antibiotics10020116 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donkor, E. S. & Kotey, F. C. Methicillin-resistant Staphylococcus aureus in the oral cavity: Implications for antibiotic prophylaxis and surveillance. Infect. Dis. 13, 1178633720976581. https://doi.org/10.1177/1178633720976581 (2020).

    Article 

    Google Scholar 

  • Santos, J. S. et al. What we know about antibiotics prescribed by dentists in a Brazilian southeastern state. Braz. Oral Res. 36, e002. https://doi.org/10.1590/1807-3107bor-2022.vol36.0002 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kwapisz, E. et al. Presence of egc-positive major clones ST 45, 30 and 22 among methicillin-resistant and methicillin-susceptible oral Staphylococcus aureus strains. Sci. Rep. 10, 18889. https://doi.org/10.1038/s41598-020-76009-1 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meinen, A. et al. Antimicrobial resistance and the spectrum of pathogens in dental and oral-maxillofacial infections in hospitals and dental practices in Germany. Front. Microbiol. 12, 676108. https://doi.org/10.3389/fmicb.2021.676108 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garbacz, K., Kwapisz, E., Piechowicz, L. & Wierzbowska, M. Staphylococcus aureus isolated from the oral cavity: Phage susceptibility in relation to antibiotic resistance. Antibiotics 10(1329), 2021. https://doi.org/10.3390/antibiotics10111329 (2021).

    Article 
    CAS 

    Google Scholar 

  • Uribe-García, A. et al. Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions. J. Microbiol. Immunol. Infect. 54, 267–275. https://doi.org/10.1016/j.jmii.2019.05.010 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwendener, S. & Perreten, V. The bla and mec families of β-lactam resistance genes in the genera Macrococcus, Mammaliicoccus and Staphylococcus: An in-depth analysis with emphasis on Macrococcus. J. Antimicrob. Chemother. 77, 1796–1827. https://doi.org/10.1093/jac/dkac107 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, B. et al. Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. Int. J. Oral Sci. 12, 15. https://doi.org/10.1038/s41368-020-0079-5 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. et al. The virulence factor GroEL directs the osteogenic and adipogenic differentiation of human periodontal ligament stem cells through the involvement of JNK/MAPK and NF-kappaB signaling. J. Periodontol. 92, 103–115. https://doi.org/10.1002/JPER.20-0869 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schuenck, R. P., Cavalcante, F. S., Emery, E., Giambiagi-de Marval, M. & dos Santos, K. R. Staphylococcus aureus isolates belonging to different multilocus sequence types present specific virulence gene profiles. FEMS Immunol. Med. Microbiol. 65, 501–504 (2012). https://doi.org/10.1111/j.1574-695X.2012.00958.x

  • Nethercott, C. et al. Molecular characterization of endocarditis-associated Staphylococcus aureus. J. Clin. Microbiol. 51, 2131–2138. https://doi.org/10.1128/jcm.00651-13 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *